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NumPy for Matlab users

Introduction

MATLAB® and NumPy/SciPy have a lot in common. But there are many di�erences. NumPy and SciPy were created to do
numerical and scienti�c computing in the most natural way with Python, not to be MATLAB® clones. This page is intended to be
a place to collect wisdom about the di�erences, mostly for the purpose of helping pro�cient MATLAB® users become pro�cient
NumPy and SciPy users.

Some Key Differences

In MATLAB®, the basic data type is a multidimensional array
of double precision �oating point numbers. Most
expressions take such arrays and return such arrays.
Operations on the 2-D instances of these arrays are designed
to act more or less like matrix operations in linear algebra.

In NumPy the basic type is a multidimensional array .
Operations on these arrays in all dimensionalities including
2D are element-wise operations. One needs to use speci�c
functions for linear algebra (though for matrix multiplication,
one can use the @  operator in python 3.5 and above).

MATLAB® uses 1 (one) based indexing. The initial element of
a sequence is found using a(1). See note INDEXING

Python uses 0 (zero) based indexing. The initial element of a
sequence is found using a[0].

MATLAB®’s scripting language was created for doing linear
algebra. The syntax for basic matrix operations is nice and
clean, but the API for adding GUIs and making full-�edged
applications is more or less an afterthought.

NumPy is based on Python, which was designed from the
outset to be an excellent general-purpose programming
language. While Matlab’s syntax for some array
manipulations is more compact than NumPy’s, NumPy (by
virtue of being an add-on to Python) can do many things that
Matlab just cannot, for instance dealing properly with stacks
of matrices.

In MATLAB®, arrays have pass-by-value semantics, with a
lazy copy-on-write scheme to prevent actually creating copies
until they are actually needed. Slice operations copy parts of
the array.

In NumPy arrays have pass-by-reference semantics. Slice
operations are views into an array.

‘array’ or ‘matrix’? Which should I use?

Historically, NumPy has provided a special matrix type, np.matrix, which is a subclass of ndarray which makes binary
operations linear algebra operations. You may see it used in some existing code instead of np.array. So, which one to use?

Short answer

Use arrays.

They are the standard vector/matrix/tensor type of numpy. Many numpy functions return arrays, not matrices.
There is a clear distinction between element-wise operations and linear algebra operations.
You can have standard vectors or row/column vectors if you like.

Until Python 3.5 the only disadvantage of using the array type was that you had to use dot instead of * to multiply (reduce)
two tensors (scalar product, matrix vector multiplication etc.). Since Python 3.5 you can use the matrix multiplication @
operator.

Given the above, we intend to deprecate matrix eventually.

Long answer

NumPy contains both an array class and a matrix class. The array class is intended to be a general-purpose n-dimensional
array for many kinds of numerical computing, while matrix is intended to facilitate linear algebra computations speci�cally. In
practice there are only a handful of key di�erences between the two.

Operators * and @, functions dot(), and multiply():
For array, ``*`` means element-wise multiplication, while ``@`` means matrix multiplication; they have associated
functions multiply() and dot(). (Before python 3.5, @ did not exist and one had to use dot() for matrix
multiplication).
For matrix, ``*`` means matrix multiplication, and for element-wise multiplication one has to use the multiply()
function.

Handling of vectors (one-dimensional arrays)
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For array, the vector shapes 1xN, Nx1, and N are all di�erent things. Operations like A[:,1] return a one-
dimensional array of shape N, not a two-dimensional array of shape Nx1. Transpose on a one-dimensional array does
nothing.
For matrix, one-dimensional arrays are always upconverted to 1xN or Nx1 matrices (row or column vectors). A[:,1]
returns a two-dimensional matrix of shape Nx1.

Handling of higher-dimensional arrays (ndim > 2)
array objects can have number of dimensions > 2;
matrix objects always have exactly two dimensions.

Convenience attributes
array has a .T attribute, which returns the transpose of the data.
matrix also has .H, .I, and .A attributes, which return the conjugate transpose, inverse, and asarray() of the matrix,
respectively.

Convenience constructor
The array constructor takes (nested) Python sequences as initializers. As in, array([[1,2,3],[4,5,6]]).
The matrix constructor additionally takes a convenient string initializer. As in matrix("[1 2 3; 4 5 6]").

There are pros and cons to using both:

array

:) Element-wise multiplication is easy: A*B.
:( You have to remember that matrix multiplication has its own operator, @.
:) You can treat one-dimensional arrays as either row or column vectors. A @ v treats v as a column vector, while
v @ A treats v as a row vector. This can save you having to type a lot of transposes.
:) array is the “default” NumPy type, so it gets the most testing, and is the type most likely to be returned by 3rd
party code that uses NumPy.
:) Is quite at home handling data of any number of dimensions.
:) Closer in semantics to tensor algebra, if you are familiar with that.
:) All operations (*, /, +, - etc.) are element-wise.
:( Sparse matrices from scipy.sparse do not interact as well with arrays.

matrix

:\\ Behavior is more like that of MATLAB® matrices.
<:( Maximum of two-dimensional. To hold three-dimensional data you need array or perhaps a Python list of
matrix.
<:( Minimum of two-dimensional. You cannot have vectors. They must be cast as single-column or single-row
matrices.
<:( Since array is the default in NumPy, some functions may return an array even if you give them a matrix as an
argument. This shouldn’t happen with NumPy functions (if it does it’s a bug), but 3rd party code based on NumPy may
not honor type preservation like NumPy does.
:) A*B is matrix multiplication, so it looks just like you write it in linear algebra (For Python >= 3.5 plain arrays have the
same convenience with the @ operator).
<:( Element-wise multiplication requires calling a function, multiply(A,B).
<:( The use of operator overloading is a bit illogical: * does not work element-wise but / does.
Interaction with scipy.sparse is a bit cleaner.

The array is thus much more advisable to use. Indeed, we intend to deprecate matrix eventually.

Table of Rough MATLAB-NumPy Equivalents

The table below gives rough equivalents for some common MATLAB® expressions. These are not exact equivalents, but rather
should be taken as hints to get you going in the right direction. For more detail read the built-in documentation on the NumPy
functions.

In the table below, it is assumed that you have executed the following commands in Python:

Also assume below that if the Notes talk about “matrix” that the arguments are two-dimensional entities.

General Purpose Equivalents

MATLAB numpy Notes

help func info(func)  or help(func)  or func?  (in
Ipython)

get help on the function func

which func see note HELP
(https://docs.scipy.org/doc/numpy/user/numpy-for-
matlab-users.notes)

�nd out where func is de�ned

type func source(func)  or func??  (in Ipython) print source for func (if not a
native function)

a && b a and b short-circuiting logical AND
operator (Python native
operator); scalar arguments
only

a || b a or b short-circuiting logical OR
operator (Python native
operator); scalar arguments
only

from numpy import *

import scipy.linalg

https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.notes


MATLAB numpy Notes

1*i , 1*j , 1i , 1j 1j complex numbers

eps np.spacing(1) Distance between 1 and the
nearest �oating point number.

ode45 scipy.integrate.solve_ivp(f) integrate an ODE with Runge-
Kutta 4,5

ode15s scipy.integrate.solve_ivp(f, method='BDF') integrate an ODE with BDF
method

Linear Algebra Equivalents

MATLAB NumPy Notes

ndims(a) ndim(a)  or a.ndim get the number of dimensions
of an array

numel(a) size(a)  or a.size get the number of elements of
an array

size(a) shape(a)  or a.shape get the “size” of the matrix

size(a,n) a.shape[n-1] get the number of elements of
the n-th dimension of array a .
(Note that MATLAB® uses 1
based indexing while Python
uses 0 based indexing, See note
INDEXING)

[ 1 2 3; 4 5 6 ] array([[1.,2.,3.], [4.,5.,6.]]) 2x3 matrix literal

[ a b; c d ] block([[a,b], [c,d]]) construct a matrix from blocks
a , b , c , and d

a(end) a[-1] access last element in the 1xn
matrix a

a(2,5) a[1,4] access element in second row,
�fth column

a(2,:) a[1]  or a[1,:] entire second row of a

a(1:5,:) a[0:5]  or a[:5]  or a[0:5,:] the �rst �ve rows of a

a(end-4:end,:) a[-5:] the last �ve rows of a

a(1:3,5:9) a[0:3][:,4:9] rows one to three and columns
�ve to nine of a . This gives
read-only access.

a([2,4,5],[1,3]) a[ix_([1,3,4],[0,2])] rows 2,4 and 5 and columns 1
and 3. This allows the matrix to
be modi�ed, and doesn’t
require a regular slice.

a(3:2:21,:) a[ 2:21:2,:] every other row of a , starting
with the third and going to the
twenty-�rst

a(1:2:end,:) a[ ::2,:] every other row of a , starting
with the �rst

a(end:-1:1,:)  or flipud(a) a[ ::-1,:] a  with rows in reverse order

a([1:end 1],:) a[r_[:len(a),0]] a  with copy of the �rst row
appended to the end

a.' a.transpose()  or a.T transpose of a

a' a.conj().transpose()  or a.conj().T conjugate transpose of a

a * b a @ b matrix multiply

a .* b a * b element-wise multiply

a./b a/b element-wise divide

a.^3 a**3 element-wise exponentiation

(a>0.5) (a>0.5) matrix whose i,jth element is
(a_ij > 0.5). The Matlab result is
an array of 0s and 1s. The
NumPy result is an array of the
boolean values False  and
True .

find(a>0.5) nonzero(a>0.5) �nd the indices where ( a  >
0.5)

a(:,find(v>0.5)) a[:,nonzero(v>0.5)[0]] extract the columms of a
where vector v > 0.5

a(:,find(v>0.5)) a[:,v.T>0.5] extract the columms of a
where column vector v > 0.5

a(a<0.5)=0 a[a<0.5]=0 a  with elements less than 0.5
zeroed out

a .* (a>0.5) a * (a>0.5) a  with elements less than 0.5
zeroed out



MATLAB NumPy Notes

a(:) = 3 a[:] = 3 set all values to the same scalar
value

y=x y = x.copy() numpy assigns by reference

y=x(2,:) y = x[1,:].copy() numpy slices are by reference

y=x(:) y = x.flatten() turn array into vector (note that
this forces a copy)

1:10 arange(1.,11.)  or r_[1.:11.]  or
r_[1:10:10j]

create an increasing vector (see
note RANGES)

0:9 arange(10.)  or r_[:10.]  or
r_[:9:10j]

create an increasing vector (see
note RANGES)

[1:10]' arange(1.,11.)[:, newaxis] create a column vector

zeros(3,4) zeros((3,4)) 3x4 two-dimensional array full
of 64-bit �oating point zeros

zeros(3,4,5) zeros((3,4,5)) 3x4x5 three-dimensional array
full of 64-bit �oating point zeros

ones(3,4) ones((3,4)) 3x4 two-dimensional array full
of 64-bit �oating point ones

eye(3) eye(3) 3x3 identity matrix

diag(a) diag(a) vector of diagonal elements of
a

diag(a,0) diag(a,0) square diagonal matrix whose
nonzero values are the
elements of a

rand(3,4) random.rand(3,4)  or
random.random_sample((3, 4))

random 3x4 matrix

linspace(1,3,4) linspace(1,3,4) 4 equally spaced samples
between 1 and 3, inclusive

[x,y]=meshgrid(0:8,0:5) mgrid[0:9.,0:6.]  or
meshgrid(r_[0:9.],r_[0:6.]

two 2D arrays: one of x values,
the other of y values

  ogrid[0:9.,0:6.]  or
ix_(r_[0:9.],r_[0:6.]

the best way to eval functions
on a grid

[x,y]=meshgrid([1,2,4],[2,4,5]) meshgrid([1,2,4],[2,4,5])  

  ix_([1,2,4],[2,4,5]) the best way to eval functions
on a grid

repmat(a, m, n) tile(a, (m, n)) create m by n copies of a

[a b] concatenate((a,b),1)  or
hstack((a,b))  or
column_stack((a,b))  or c_[a,b]

concatenate columns of a  and
b

[a; b] concatenate((a,b))  or
vstack((a,b))  or r_[a,b]

concatenate rows of a  and b

max(max(a)) a.max() maximum element of a  (with
ndims(a)<=2 for matlab)

max(a) a.max(0) maximum element of each
column of matrix a

max(a,[],2) a.max(1) maximum element of each row
of matrix a

max(a,b) maximum(a, b) compares a  and b  element-
wise, and returns the maximum
value from each pair

norm(v) sqrt(v @ v)  or np.linalg.norm(v) L2 norm of vector v

a & b logical_and(a,b) element-by-element AND
operator (NumPy ufunc) See
note LOGICOPS

a | b logical_or(a,b) element-by-element OR
operator (NumPy ufunc) See
note LOGICOPS

bitand(a,b) a & b bitwise AND operator (Python
native and NumPy ufunc)

bitor(a,b) a | b bitwise OR operator (Python
native and NumPy ufunc)

inv(a) linalg.inv(a) inverse of square matrix a

pinv(a) linalg.pinv(a) pseudo-inverse of matrix a

rank(a) linalg.matrix_rank(a) matrix rank of a 2D array /
matrix a

a\b linalg.solve(a,b)  if a  is square;
linalg.lstsq(a,b)  otherwise

solution of a x = b for x

b/a Solve a.T x.T = b.T instead solution of x a = b for x

[U,S,V]=svd(a) U, S, Vh = linalg.svd(a), V = Vh.T singular value decomposition of
a



MATLAB NumPy Notes

chol(a) linalg.cholesky(a).T cholesky factorization of a
matrix ( chol(a)  in matlab
returns an upper triangular
matrix, but
linalg.cholesky(a)

returns a lower triangular
matrix)

[V,D]=eig(a) D,V = linalg.eig(a) eigenvalues and eigenvectors of
a

[V,D]=eig(a,b) D,V = scipy.linalg.eig(a,b) eigenvalues and eigenvectors of
a , b

[V,D]=eigs(a,k)   �nd the k  largest eigenvalues
and eigenvectors of a

[Q,R,P]=qr(a,0) Q,R = scipy.linalg.qr(a) QR decomposition

[L,U,P]=lu(a) L,U = scipy.linalg.lu(a)  or
LU,P=scipy.linalg.lu_factor(a)

LU decomposition (note:
P(Matlab) ==
transpose(P(numpy)) )

conjgrad scipy.sparse.linalg.cg Conjugate gradients solver

fft(a) fft(a) Fourier transform of a

ifft(a) ifft(a) inverse Fourier transform of a

sort(a) sort(a)  or a.sort() sort the matrix

[b,I] = sortrows(a,i) I = argsort(a[:,i]), b=a[I,:] sort the rows of the matrix

regress(y,X) linalg.lstsq(X,y) multilinear regression

decimate(x, q) scipy.signal.resample(x, len(x)/q) downsample with low-pass
�ltering

unique(a) unique(a)  

squeeze(a) a.squeeze()  

Notes

Submatrix: Assignment to a submatrix can be done with lists of indexes using the ix_ command. E.g., for 2d array a, one might
do: ind=[1,3]; a[np.ix_(ind,ind)]+=100.

HELP: There is no direct equivalent of MATLAB’s which command, but the commands help and source will usually list the
�lename where the function is located. Python also has an inspect module (do import inspect) which provides a getfile
that often works.

INDEXING: MATLAB® uses one based indexing, so the initial element of a sequence has index 1. Python uses zero based
indexing, so the initial element of a sequence has index 0. Confusion and �amewars arise because each has advantages and
disadvantages. One based indexing is consistent with common human language usage, where the “�rst” element of a sequence
has index 1. Zero based indexing simpli�es indexing
(https://groups.google.com/group/comp.lang.python/msg/1bf4d925dfbf368?q=g:thl3498076713d&hl=en). See also a text by
prof.dr. Edsger W. Dijkstra (https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html).

RANGES: In MATLAB®, 0:5 can be used as both a range literal and a ‘slice’ index (inside parentheses); however, in Python,
constructs like 0:5 can only be used as a slice index (inside square brackets). Thus the somewhat quirky r_ object was created
to allow numpy to have a similarly terse range construction mechanism. Note that r_ is not called like a function or a
constructor, but rather indexed using square brackets, which allows the use of Python’s slice syntax in the arguments.

LOGICOPS: & or | in NumPy is bitwise AND/OR, while in Matlab & and | are logical AND/OR. The di�erence should be clear to
anyone with signi�cant programming experience. The two can appear to work the same, but there are important di�erences. If
you would have used Matlab’s & or | operators, you should use the NumPy ufuncs logical_and/logical_or. The notable
di�erences between Matlab’s and NumPy’s & and | operators are:

Non-logical {0,1} inputs: NumPy’s output is the bitwise AND of the inputs. Matlab treats any non-zero value as 1 and returns
the logical AND. For example (3 & 4) in NumPy is 0, while in Matlab both 3 and 4 are considered logical true and (3 & 4)
returns 1.
Precedence: NumPy’s & operator is higher precedence than logical operators like < and >; Matlab’s is the reverse.

If you know you have boolean arguments, you can get away with using NumPy’s bitwise operators, but be careful with
parentheses, like this: z = (x > 1) & (x < 2). The absence of NumPy operator forms of logical_and and logical_or is an unfortunate
consequence of Python’s design.

RESHAPE and LINEAR INDEXING: Matlab always allows multi-dimensional arrays to be accessed using scalar or linear indices,
NumPy does not. Linear indices are common in Matlab programs, e.g. �nd() on a matrix returns them, whereas NumPy’s �nd
behaves di�erently. When converting Matlab code it might be necessary to �rst reshape a matrix to a linear sequence, perform
some indexing operations and then reshape back. As reshape (usually) produces views onto the same storage, it should be
possible to do this fairly e�ciently. Note that the scan order used by reshape in NumPy defaults to the ‘C’ order, whereas
Matlab uses the Fortran order. If you are simply converting to a linear sequence and back this doesn’t matter. But if you are
converting reshapes from Matlab code which relies on the scan order, then this Matlab code: z = reshape(x,3,4); should become
z = x.reshape(3,4,order=’F’).copy() in NumPy.

Customizing Your Environment
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In MATLAB® the main tool available to you for customizing the environment is to modify the search path with the locations of
your favorite functions. You can put such customizations into a startup script that MATLAB will run on startup.

NumPy, or rather Python, has similar facilities.

To modify your Python search path to include the locations of your own modules, de�ne the PYTHONPATH environment
variable.
To have a particular script �le executed when the interactive Python interpreter is started, de�ne the PYTHONSTARTUP
environment variable to contain the name of your startup script.

Unlike MATLAB®, where anything on your path can be called immediately, with Python you need to �rst do an ‘import’
statement to make functions in a particular �le accessible.

For example you might make a startup script that looks like this (Note: this is just an example, not a statement of “best
practices”):

Links

See http://mathesaurus.sf.net/ (http://mathesaurus.sf.net/) for another MATLAB®/NumPy cross-reference.

An extensive list of tools for scienti�c work with python can be found in the topical software page (https://scipy.org/topical-
software.html).

MATLAB® and SimuLink® are registered trademarks of The MathWorks.
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# Make all numpy available via shorter 'np' prefix

import numpy as np

# Make all matlib functions accessible at the top level via M.func()

import numpy.matlib as M

# Make some matlib functions accessible directly at the top level via, e.g. rand(3,3)

from numpy.matlib import rand,zeros,ones,empty,eye

# Define a Hermitian function

def hermitian(A, **kwargs): 

    return np.transpose(A,**kwargs).conj()

# Make some shortcuts for transpose,hermitian:

#    np.transpose(A) --> T(A)

#    hermitian(A) --> H(A)

T = np.transpose

H = hermitian
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